热门推荐
最新游戏
推荐网游
推荐单机

游戏数据分析的几个误区

  • 来源:GameDatas
  • 作者:
  • 时间:2014-08-14
  • 我要评论
本文导航
  • 第2页:游戏数据分析的几个误区2

  2.过度依赖分析方法,沉迷于数据建模过程

  作者在大学期间,读的便是统计学专业,大学参加过数学建模比赛拿到较好的名次,也做过一系列诸如BP神经网络,贝叶斯决策树或是聚类分析等项目,在刚接触游戏数据分析时,十分兴奋,便用了各式各样的方法对数据进行分析。渐渐的我发现,在实际工作中,数据分析并不像学术研究那样严谨,更需要对数据表现作出快速判断,不需要在每次分析前都去验证样本群体是否符合某种统计分布,也可能不需要用“人工神经网络”等“高科技手段”去预测产品将来的用户数,甚至给出“A>B”的结论时也用不着做“显著性检验”,考验得更多的是对业务的理解的把握能力。所以在开展数据分析工作过程中,切勿过度依赖分析方法,而应重视游戏业务的把握。

  3.数据是客观存在的,切勿主观误读数据

  对于在一线工作过一段时间的同行来说,做数据分析经常会走入这样一个怪圈,在我们提取数据的过程中,我们会看到部分的数据表现,而且对各种各样的现象都有了一些自身理解的结论,在这样的思想指导下,总有方法去用数据去验证自己的结论。在我看来,数据是客观存在的,解读数据也需要秉持客观中立的态度,千万需要避免为了自身观点去解读一份数据。

  4.不明确数据分析目的,模糊分析需求,分析不完整,应该做一份300%的分析报告

  明确分析的目的及需求,比如不要将核心用户研究误认为活跃用户分析。网龙的刘经理曾经跟我分享给一个这样的案例,产品经理跟你提出做一份COC的活动数据分析报告,去衡量活动效果,一般情况下,你会将活动前期,中期,后期的游戏宏观数据拿出来,然后画图看各个阶段的表现,然后做出判断。然后欢欣雀跃的拿着报告交给产品经理,这样就觉得了事了。如果从一个数据分析师的角度看来,这样的报告是很廉价的。别人提分析需求时,可能他有10个问题,但是只给我们描述了3个问题,我们并不能简单解决这样3个问题,我们应该更多的是中立客观的从多个角度去思考这样一个问题,然后从产品自身,产品玩家,产品运营等等多个角度,全面的去衡量这样一个问题,去发现潜在机会,然后做出一份300%的分析报告,而不是100%。

推荐专区